The Ultrarelativistic Reissner Nordstrrm Field in the Colombeau Algebra

نویسنده

  • R Steinbauer
چکیده

The electromagnetic eld of the ultrarelativistic Reissner Nordstrrm Solution shows the physically highly unsatisfactory property of a vanishing eld tensor but a nonzero, i.e.-like, energy density. The aim of this work is to analyse this situation from a mathematical point of view, using the framework of Colombeau's theory of nonlinear generalized functions. It is shown that the physically unsatisfactory situation is mathematically perfectly deened and that one cannot aviod such situations when dealing with distributional valued eld tensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Ultrarelativistic Reissner Nordstrøm Field in the Colombeau Algebra

The electromagnetic field of the ultrarelativistic Reissner Nordstrøm Solution shows the physically highly unsatisfactory property of a vanishing field tensor but a nonzero, i.e. δ-like, energy density. The aim of this work is to analyse this situation from a mathematical point of view, using the framework of Colombeau’s theory of nonlinear generalized functions. It is shown that the physically...

متن کامل

Regularized fractional derivatives in Colombeau algebra

The present study aims at indicating the existence and uniqueness result of system in extended colombeau algebra. The Caputo fractional derivative is used for solving the system of ODEs. In addition, Riesz fractional derivative of  Colombeau generalized algebra is considered. The purpose of introducing Riesz fractional derivative is regularizing it in Colombeau sense. We also give a solution to...

متن کامل

Existence and uniqueness of solution of Schrodinger equation in extended Colombeau algebra

In this paper, we establish the existence and uniqueness result of the linear Schrodinger equation with Marchaud fractional derivative in Colombeau generalized algebra. The purpose of introducing Marchaud fractional derivative is regularizing it in Colombeau sense.

متن کامل

Existence/uniqueness of solutions to Heat equation in extended Colombeau algebra

This work concerns the study of existence and uniqueness to heat equation with fractional Laplacian dierentiation in extended Colombeau algebra.

متن کامل

Solving fractional evolution problem in Colombeau algebra by mean generalized fixed point

‎The present paper is devoted to the existence and uniqueness result of the fractional evolution equation $D^{q}_c u(t)=g(t,u(t))=Au(t)+f(t)$‎ ‎for the real $qin (0,1)$ with the initial value $u(0)=u_{0}intilde{R}$‎, ‎where $tilde{R}$ is the set of all generalized real numbers and $A$ is an operator defined from $mathcal G$ into itself‎. Here the Caputo fractional derivative $D^{q}_c$ is used i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996